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ABSTRACT 
 
Electromagnetic induction (EMI) has been shown to be a promising technique for unexploded ordnance (UXO) 
detection and discrimination.  The excitation and response of a UXO or any other object to EMI sensors can be 
described in terms of scalar spheroidal modes consisting of associated Legendre functions.  The spheroidal response 
coefficients Bj

k correspond to the kth spheroidal response to the jth spheroidal excitation. The Bj
k have been shown to be 

unique properties of an object, in that objects producing different scattered fields must be characterized by different Bj
k.  

Therefore, the Bj
k coefficients may be useful in discrimination.  We use these coefficients rather than dipole moments 

because they are part of a physically complete, rigorous model of the object's response.  Prolate spheroidal coordinate 
systems recommend themselves because they conform most readily to the proportions of objects of interest.  
 
In clearing terrain contaminated by UXO, the ability to distinguish larger buried metallic objects from smaller ones is 
essential. Here, a Support Vector Machine (SVM) is trained to sort objects into different size classes, based on the Bj

k.  
The classified objects include homogeneous spheroids and composite metallic assemblages.  Training a SVM requires 
many cases.  Therefore, an analytical model is used to generate the necessary data.  In simulation studies, the SVM is 
very successful in classifying independent sets of objects of the same type as the training set.  Furthermore, we see that 
the Bj

k are not related to size or signal strength of the object in any simple or visually discernible way.  However, SVM 
is still able to sort the objects correctly. Ultimately, the success of the SVM trained with synthetic (model derived) data 
will be evaluated in application to data from a limited population of real objects, including UXO.   
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1. INTRODUCTION 

1.1. Motivation 
Clean up of UXO sites is expensive due to high false alarm rates.  The high false alarm rates are due in part to the 
presence of clutter at these sites.  EMI sensing is used to detect buried objects, and UXO discrimination is based on the 
EMI response of the objects.  

1.2. UXO discrimination and classification 
One of the most basic types of discrimination is determining whether a buried object is a UXO or a piece of clutter.  To 
do such discrimination, it is necessary to ask what characteristics distinguish clutter objects from UXO.  To this effect, 
we have determined four key points: 
 

1. Elongation: Objects are considered elongated when the length along one dimension of the object is at least 
twice the length of the dimension along the transverse direction of that object.  Many UXO are intended to be 
launched into the air and thus have an elongated, prolate spheroidal shape.  In general, clutter objects do not 
adhere to this principle.   
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2. Body of Revolution (BOR): UXO are almost always a BOR.  Even the presence of fins or other small 
deviations on a UXO does not affect the response of the object to the extent that we are able to distinguish it 
from true BOR objects when classification of such objects is concerned.1  Clutter can be any random shape and 
thus has no higher likelihood to be BOR.      

3. Size: Though some small UXO types exist, the majority of UXO are large.  Therefore large objects are of great 
interest to workers who clean up UXO sites.  Small clutter particles can have a strong EMI response if they are 
buried at shallow depths which is often the case.  Since the strength of the object’s response is such a poor 
indication of the object’s size, discrimination processing is necessary to avoid the costly task of digging up 
these clutter objects.      

4. Homogeneity: UXO are usually composed of many different materials while clutter is often homogenous.  The 
ability to distinguish between homogeneous and heterogeneous objects is another tool in being able to 
discriminate clutter objects from UXO.   

 
In previous work, the ability to distinguish elongated from non-elongated objects has been investigated.1  Our current 
work focuses on classifying objects by size, homogeneity, and BOR properties.   

1.3. Spheroidal mode background 
The magnetic field generated by the transmitter is called the primary magnetic field, ( )PR rH .  The secondary magnetic 
field, ( )S rH , is the response of the target.  In the EMI regime of a few Hz to a few 100 kHz, these magnetic fields can 
be considered irrotational if the target is embedded in a non-conducting medium.  Therefore, the primary and secondary 
magnetic field can be given in terms of the gradient of a scalar potential: ( )PR

j rΨ  for the primary potential and  ( )S
k rΨ  

for the secondary potential.  Furthermore, these two potentials can be expressed as a linear superposition of a finite 
number of modes each of which is a solution to Laplace’s equation.  The spheroidal coordinate system was selected as 
the basis for this decomposition.   
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In equations 1 to 4, ( )m

nP  and ( )m
nQ  are the associated Legendre functions of the first and second kind, respectively.  

Equation 2 is a compact way of writing equation 1.  Likewise, equation 4 is a compact way of writing equation 3.  Each 
j or k mode index is a compact form to write all the indices of the Legendre functions for each mode and can be 
expanded into the form j = (p,m,n) and k = (p,m,n).   Unlike the spherical coordinate system, the spheroidal coordinate 
system must be uniquely specified with an interfocal distance d.  
 
The primary and secondary magnetic fields that can be obtained by taking the gradient of equations 2 and 4, 
respectively. 
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S
jH represents the secondary field response to a single excitation mode j.  We can decompose S

jH  in the same manner 
as equation 6 to obtain the Bj

k coefficients in equation 7.  These coefficients correspond to the kth mode of the 
spheroidal response to the jth mode of the spheroidal excitation.  It can be mathematically proven that all objects with 
unique EMI responses also have unique Bj

k coefficients.5,13    We take advantage of the uniqueness property of these 
coefficients in our discrimination work and inverse problem solutions.  

1.4. SVM background 
Determining if an object is clutter or an UXO by using the Bj

k coefficients of the object is a pattern classification 
recognition problem.  SVM is a supervised statistical learning algorithm.20  The basic idea of SVM is that all data points 
can be mapped into an n-dimensional space where each dimension corresponds to each “n” input parameter or 
characteristic of that data point.  Therefore in our research, each scatterer is considered as a data point and the Bj

k of 
each object become the dimensions for the n-dimensional space.  Parameters of that scatterer, such as size or elongation 
form the classification categories.       
 
By processing a collection of “training data” for which we already know the class of each object, an SVM becomes 
aware of where the objects of each class are positioned in the n-dimensional space.  Then the basic objective of an SVM 
is to find the optimal hyperplane that correctly separates the points of the two classes as completely as possible.  This 
process is called “training the SVM.”  When a new object of an unknown class is presented to SVM, SVM only has find 
on which side of the hyperplane the new object falls to decide which class it belongs to.  Therefore, once a SVM is 
trained, the classification process is normally very fast.  A quantitative performance measure of a trained SVM is 
determined by the accuracy with which it classifies a set of “test data,” generated independently of the training data.  
The actual class for each test data object is known but not given to the SVM.  The result of the SVM classification on 
the test data is then compared to the true class to determine the error rate.   
 
Most data points in their native space are not usually directly separable with a hyperplane.  Therefore the SVM will 
non-linearly map the n-dimensional input space into a higher dimensional feature space using a kernel function.  In this 
higher dimensional feature space, the data can usually be separated.20 
 

2. METHODOLOGY 

2.1. mySVM  
We chose to use a prepackaged implementation of SVM called mySVM which has been shown to be successful in past 
classification work.1  The software mySVM was developed at the Unversity of Dortmund and is an implementation of 
SVM introduced by Vapnik.20  This software is freely distributed on the Internet.21  We used mySVM in its “pattern 
matching” mode with a radial kernel function.     

2.2. Forward model 
It would be extremely difficult to take measurements from enough unique objects to obtain the necessary amount of 
training data.  Therefore, we use a forward model for homogeneous spheroids and composite objects to generate objects 
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with arbitrary permeability, conductivity, and size.5,6,11  With a forward model, we can create an infinite amount of 
training data.       

2.2.1. Necessity of a fast forward model 
SVM requires a large set of training data.  In our experience, optimal results were obtained when over 2000 unique 
training objects were used.  Therefore any forward model used must be relatively fast.  Though a large portion of this 
preliminary study focuses on synthetic data and objects, training on synthetic random objects will always be necessary 
even when we want to classify objects using real field measurements.  It is not cost effective or efficient to find and 
measure enough real objects to form a large and effective training data set.  Past classification studies have incorporated 
the Bj

k from measurements of some real objects into the training set.1  However, the majority of the training data was 
always synthetic.        

2.2.2. Spheroidal model 
For the initial investigation, we can model scatterers in two general ways.  First, the simplest way is to model a single 
spheroid.  Algorithms have been developed to generate the spheroidal Bj

k coefficients and the vectorial H fields for any 
arbitrary spheroid in terms of size and elongation, i.e. interfocal distance, with variable permeability and conductivity. 
5,6,11   In this model, spheroids can be used to represent objects ranging from flat disks to long thin rods.  From the 
calculated H fields, we can solve for the appropriate Bj

k coefficients to mimic the procedure that would need to take 
place for actual measured data.    
 
It is necessary to note that although modeling a spheroid in a spheroidal coordinate system with the same interfocal 
distance may seem to be a natural fit, this is not an appropriate approach when classification is the primary goal.  
Rather, we must fix all coordinate systems at a single universal interfocal distance and solve for the Bj

k of all objects 
within this single coordinate system.  Comparing Bj

k of different objects is the crux of our SVM classification work, but 
this comparison is meaningless unless the coefficients are from the exact same spheroidal coordinate system.        
 
Secondly, we can create composite, heterogeneous objects with two small spheroids that are coaxial and are separated 
by a distance of 1mm as show in in Figure 1.  Thus this composite object is a BOR object.  The two spheroids that form 
this composite object are given different permeability and conductivity values.  The H-field response of each spheroid 
was calculated and summed.  The Bj

k were then solved for that total H-field.  We assume no interaction between the two 
spheroids.  Experimentation has shown that this is a reasonable assumption when one object of two closely spaced 
objects is not permeable.     
 

 
Fig. 1. The SVM was trained using single spheroids (left) or composite objects (right).  Note that the interfocal distance for 

the coordinate system must be the same across all training and test objects.   

 

2.2.3. Selection of Bjk modes 
The GEM-3 sensor manufactured by Geophex is a commonly used EMI sensor.  It essentially consists of two concentric 
wire loops with a current running in opposite directions on each.  The H-field in the center of the loops is null so 
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measurements of the secondary field are taken at this center point.  As with any sensor, the GEM-3 produces fields 
which can be expressed as an infinite linear combination of orthogonal primary modes.  However, the GEM-3 primary 
fields are dominated by a few modes while the other modes are negligible.  It has been found that four to seven modes 
are sufficient to describe the primary potentials.1  The four most dominant modes are j = (0,0,1), (0,0,2), (0,1,1), and 
(1,1,1) and are called the “basic primary modes.”  Modes (0,0,3), (0,1,2), and (1,1,2) are also significant but are not as 
dominant as the basic primary modes.  We will call the combination of all seven modes, “extended primary modes.”   
 
The secondary fields are strongly dependent on the properties of a scattering object.  Therefore, we are unable 
determine a priori which secondary modes will be most dominant.  We do know, however, that when the observation is 
far from the scatterer, the dipole model provides a good approximation to the object.  Mode k = (0,1,1) corresponds to 
the dipole component in the x direction, (1,1,1) corresponds to the y direction, and (0,0,1) corresponds to the z direction.  
So we choose to truncate the secondary modes, retaining those that have m and n less than or equal to 1.  Therefore with 
7 modes for j and 4 modes for k, we have a total of 28 j

kB  coefficients.  We consider the response of the objects at two 
different frequencies: one high at 10950 Hz and one low at 210 Hz.  Furthermore, the real and imaginary components of 
each fundamental mode are considered as independent inputs to the SVM.  Therefore we have a total of 112 input 
parameters for SVM.         

2.3. Previous work  
Applying SVM to the problem of classifying spheroids based on elongation has already been shown to be successful.1  
In previous work, the Bj

k of 394 materially homogeneous spheroids of various elongations were used to train SVM.  For 
test data, 93 independent spheroids were generated with the forward model and classified by the SVM as elongated (e 
>2) or not.  Of those 93, only 3 were incorrectly classified.           
 

3. CLASSIFICATION BASED ON OBJECT SIZE 

In this study, we are interested in classifying objects based on size.  Since our synthetic objects are up to 0.08 cubic 
meters in volume, we identify objects with volumes greater than 0.04 cubic meters as “large.”  Objects with volumes 
smaller than 0.04 cubic meters are considered “small.”  This chosen threshold and range of object sizes are completely 
arbitrary, and a properly trained SVM can identify objects for any desired threshold.     

3.1. Single spheroid 

3.1.1. Method 
Our initial investigation focused on single spheroid objects.  We used training data comprised of 2000 synthetic objects.  
1000 were “small” objects and 1000 were “large” objects.  The single spheroid training set and single spheroid test set 
consisted of objects that either had relative permeability of 100 and a conductivity of 2x106 S/m or was non-permeable 
and had a conductivity of 2x107 S/m.  The size of each object was randomly assigned and ranged from 0.001 m3 to 0.08 
m3.  The elongation was also randomly assigned and ranged from 0.1 to 4 (ratio of major axis to minor axis length).  
The interfocal distance of our coordinate system was 1.22 and was the universal standard for the generation of all 
synthetic objects in our study.  Generation of the Bj

k for all 2000 synthetic objects took roughly 24 hours on a 3GHz 
Pentium 4 PC.  Training the SVM took only a few minutes.          

3.1.2. Results 
The test data consisted of 200 single spheroid objects, with 100 large objects and 100 small objects.  Each object had a 
random elongation, random size, and one of the two possible material compositions that were used in the generation of 
the training data.  Shown in Figure 2 is a scatter plot that summarizes the SVM classification of these test data.  Each 
point represents one single test object.  The vertical axis is the actual volume of each object.  The horizontal axis is the 
sum of the squares of the j

kB  input parameters for each object.  Triangular data points represent objects that SVM 
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predicted as large.  Circle data points represent objects that SVM predicted as small.  Table 1 is the corresponding 
confusion matrix.  For this classification, there are 4 erroneously classified objects so we consider the error to be 2%.  
As expected from a properly functioning SVM, all the erroneously classified objects are close to the boundary.    

 
Fig. 2. The result of classification of single spheroids by a SVM trained on single spheroids.  Triangles represent objects 

that were classified as large; circles represent objects classified as small.  The vertical location of each marker is 
determined by the actual size of the corresponding object.  The horizontal location is determined by the overall 
magnitude of the secondary spheroidal coefficients.  Horizontal line indicates the boundary between “large” and 
“small” objects.     

 

 

Table. 1.  Corresponding confusion matrix for Figure 2. 

                               Predicted 

 Large Small 

Large 96 4 

A
ct

ua
l 

Small 0 100 

 

One very important feature of Figure 1 is that the size of the object has no obvious relationship with the magnitudes of 
the Bj

k coefficients.  One might simply assume that larger objects simply have larger overall Bj
k coefficients and that 

application of SVM is unnecessary to do classification.  If that were the case, then all data points in Figure 1 should be 
distributed close to a diagonal pattern in the previous figure.  This pattern does not appear yet SVM is quite successful 
in classifying objects by size.  Therefore, there is a hidden, underlying pattern makes it necessary to use SVM to do 
classification.   
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3.2. Composite spheroids  

3.2.1. Method 

The second type of object that we are interested in is heterogeneous objects.  This type of object is a composite of two 
different arbitrarily sized spheroids.  One spheroid has a relative permeability of 100 and a conductivity of 2x106 S/m.  
The other spheroid is non-permeable and has a conductivity of 2x107 S/m.  As with the single spheroid case, the 
elongation and size of each spheroid is randomly assigned and the total volume of both objects ranged from 0.001 m3 to 
0.08 m3.  2000 training cases and 200 test cases were used for the composite object cases.      
 

3.2.2. Summary of results 
 
Table 2 summarizes the accuracy of SVM classification for single spheroid objects and composite spheroid objects.  As 
detailed earlier, when SVM is trained on single objects, it only gives a 2% error when classifying single objects.  When 
this trained SVM is used to classify composite objects, it can give an error of 12%.  Likewise, when an SVM is trained 
using composite objects and then tested using composite objects, it gives an error of 2.5%.  When this SVM is tested 
using single objects, it produces an error of 8.0%.  We feel that the errors rates of 8.0% and 12.0% for when the SVM is 
tested with different types of objects from those it was trained with indicate that there is some underlying pattern of the 
Bj

k that can identify whether an object is large or small.  Furthermore, if we anticipate both single and composite type 
objects to be present, we can also train the SVM with both single and composite objects as was done to generate the 
third column of Table 2.  Here this SVM is capable of classifying both types of objects with only a small loss of 
accuracy yet a high gain of generality.   
 

 

Table. 2.  Percent error for volume based classification of the single spheroid test set and the composite spheroid test set.  
The three columns indicate three different SVM that formed using different sets of training data: single spheroids 
alone, composite spheroids alone, and both single and composite spheroids together. 

 
                              Training Data 

 Single Composite Composite 
and Single 

Test Data 
Single 2.0% 8.0% 4.0% 

Test Data 
Composite 12% 2.5% 3.5% 

 
 

3.3. Classification based on volume with added noise 

3.3.1. Method 
Since the measurements collected in the field are subject to both instrument and environmental noise, our understanding 
of SVM classification limitations would be incomplete without examining SVM classification of noisy signals. It would 
be unnatural and incorrect to simply add noise to the Bj

k.  Noise added this way does not replicate how one would 
expect to receive noisy field data.  We must therefore add noise to the H vectorial fields calculated from the Bj

k.  The H 
fields were calculated for a grid of points that is 12 points by 12 points with a 6m span and with two elevations 
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separated by 20cm.  We added -10dB and -3dB Gaussian noise to the calculated H fields.  Noise is calculated with 
respect to the mean over space of each vectorial H component of each object.  We then solved for the Bj

k of that noisy 
magnetic field using a point matching method.  We used Gaussian noise because noise from the sensor and 
environment, barring large pieces of clutter, tends to be Gaussian.  -3dB of noise is within the reasonable range of 
expected noise in measured data.         

3.3.2. Results 
 
Shown in Table 3 is a summary of the percent errors that arise when two types of trained SVM classify single spheroids 
whose Bj

k were derived from their magnetic field signals that have added noise.  SVM is trained on either clean 
synthetic data alone or an equal part mixture of clean and noisy synthetic data.  When SVM is trained only on clean 
data, it does very well when classifying test objects that are uncorrupted by noise.  However, it is unable to generalize 
for noisy data.  The two instances of 50% error in the table were created because this trained SVM classified all noise 
corrupted objects as large.  When the SVM is trained on some noisy data along with clean data, it becomes much more 
robust.  This trained SVM is able to classify both clean and noisy data with a relatively good level of accuracy.  The 
three groups of test data and two groups of training data shown in Table 3 were all generated randomly and 
independently from each other.   
 
 

Table. 3.  Percent error for volume based classification of the single spheroid test set and the composite spheroid test set.  
The three columns indicate three different SVM that formed using different sets of training data: single spheroids 
alone, composite spheroids alone, and both single and composite spheroids together. 

 
                                               Training Data 

 Single Object 
(Clean) 

Single Object 
(Clean and Noisy 
with -10dB noise) 

Test Single Objects 
(Clean) 2.0% 7.0% 

Test Single Objects  
(with -10dB noise) 50% 12% 

Test Single Objects  
(with -3dB noise) 50% 30% 

 

4. CLASSIFICATION BASED ON THE HOMOGENEITY OR HETEROGENEITY OF AN 
OBJECT’S COMPOSITION 

4.1. Method 

As mentioned, one of the overall goals of this project is to develop the ability to distinguish between UXO and clutter 
objects.  Since clutter pieces tend to be materially homogeneous while UXO tend to be heterogeneous, we trained our 
SVM to distinguish between homogeneous objects made up of two spheroids with the same material properties and 
heterogeneous composite objects where the two spheroids have different material properties.  The two possibilities in 
material composition for the spheroids are, again, a relative permeability of 100 and a conductivity of 2x106 S/m or non-
permeable and a conductivity of 2x107 S/m.  Homogeneous objects are randomly assigned one of those possibilities.  
Size and elongation, again, are randomly assigned.  We train with 2000 objects; half are homogeneous and half are 
heterogeneous.  
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4.2. Results 
 
Shown in Table 4 is the confusion matrix when the trained SVM classifies a 400 member test data set.  This test data set 
was generated in the same manner as but independently of the training data set.  We note that the error of 14.75% in this 
classification scheme is higher than when the SVM classifies objects based on size.  However, we expect improvements 
to be made in our ability to classify on the basis of the heterogeneity of the objects.  Presently we are unable to explain 
why the SVM classification is skewed toward classifying objects as heterogeneous.       
 
 

Table. 4.  Confusion matrix for classification of heterogeneous versus homogeneous composite spheroidal objects. 

 

                               Predicted 

 Homog. Heterog. 

Homog. 142 58 

A
ct

ua
l 

Heterog. 1 199 

 
 

5. CLASSIFICATION BASED ON BOR LIKENESS 

5.1. Method 
 
We also noted that many UXO tend to be BOR while the same cannot be said of clutter.  Therefore we attempted to 
classify objects as BOR or non-BOR.  Shown in Figure 3 are two types of composite objects, each consisting of two 
materially different spheroids.  If their rotational axes lie on the same line as before, the composite object is BOR.  If 
their axes are merely parallel, then the object is non-BOR.  We use a 2000 member training data set.  Half of that set are 
BOR; half are non-BOR.     
 

 
Fig. 3.  Two types of composite objects: BOR and non-BOR.  Both objects are materially heterogeneous.     

 

5.2. Results 
 
With a test set of 200 composite spheroidal objects, we are able to achieve perfect classification when we classified 
objects as BOR or non-BOR.  This was expected since previous work concerning the application of spheroidal modes to 
UXO work has shown that BOR objects consistently have zero value coefficients for certain secondary modes.1  Unlike 
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the patterns that SVM is able to extract when classifying on the basis of homogeneity or size, the pattern here is much 
more obvious.       
 
 

Table. 5.  Confusion matrix for classification of heterogeneous versus homogeneous objects. 

 

                               Predicted 

 BOR Non-BOR 

BOR 100 0 
A

ct
ua

l 

Non-BOR 0 100 

 
 

6. CONCLUSION 
We have achieved moderately accurate to very accurate classification of objects based on volume, heterogeneity, and 
BOR likeness.  For classification based on size, we have shown that correct classification is achievable for both single 
objects and composite objects.  Our SVM can be trained so that it can learn to generalize for both single and composite 
objects.  Furthermore, we are able to do relatively good volume classification for objects that have substantial noise 
added to their H field signals by training the SVM with noisy data.   
 

7. FUTURE WORK 
We are in the process of examining the effect of noise in other aspects of our classification work besides classification 
based on volume.  Furthermore we are extending our collection of test and training objects to include more non-BOR 
objects.  Creating a more robust SVM for noisy data is also an ongoing project for us in all aspects of our classification 
research.  We hope to eventually create a decision tree--based on the four key characteristics that distinguish UXO from 
clutter objects--that will determine if an object is a UXO or not.  We recently have started working with a new forward 
model for heterogeneous BOR objects of random shape and size.  We anticipate that this will permit even more 
accuracy and robustness for our SVM.  It is worth mentioning that although this paper concentrated on using spheroids 
or objects composed of spheroids, the spheroidal mode coefficients can describe any arbitrary object.  The use of the 
spheroidal coordinate system was chosen since it is a convenient coordinate system.  UXO objects tend to have a 
somewhat spheroidal shape so their response can be described without needing to use too many modes.  Use of 
spheroidal mode coefficients does not mean that the modeled objects must be spheroids.          
 
Finally, we have begun the foundation work toward applying our SVM to measurements from real objects.   
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